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Steady potential flow of fluild in thin layers bounded by curvilinear sur-
faces was investigated in detatl in {1 and 2] for the conditions that the vec-
tor of flow velocity does not vary along lines normal o the surfaces defin-
ing the layer, and that the veloclity components along the normal are equal
to zero.

Frankl' [3] who studled potential jet flows of fluld on the surface of a
solid body, obtalned an approximate eyuation for the potential of velocitle:,

A solution in closed form is found below for the problem of plane-parallel
Jet flow on a curvilinear surface of a small curvature.

i. Let us examine 8 Jet of a perfect incompressible fiuild bounded by a
slightly curved wall [, and a region of constant pressure 7P = P, {Fig.1}.
An auxiliary orthogoenal curvilinear coordinate system 1s selected such that
the axis g 1s oriented along the free streamline [,. In this curvilinear
gﬂstem Euler's equations and continulty equations have the followlng form
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where J, and J, are Lamé parameters, #{s} is the radius of curvature of

the jet. It is assumed that the thickness of the Jet Ais - R (s}, and terms
of the order h{s)/ R {s). are omitted in
Equations {1.1}. Then equations of the fol~
lowing form are obbtained:
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Fig. 1 Here K(s) 18 the curvature of the jet.
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It is assumed that the function x(g) 1s continuously differentiable.

Using equations of continuity a stream function t(r,s) is introduced,
and the pressure 2(r,s) is eliminated from Equations (1.2). For determina-
tion of the stress function a partial nonlinear equation of third order is

obtained
g Ww_ o By dK (0 \2 oy 8¢
Or ds0r? ds ard - E?(ér) T 2K(s) ar Ords =0 (1.3)
We will look for a solution of this equation in the form
n+fMm
V)= TR (1.4)
where the nondimensional quantity n = rx(s) . Since I, 1s a streamline,
we can set the following for r =0
1[’(0, S) = O, f(O) = (15)

Substituting Expression (1.4) for the stream function in Equation (1.3),
an ordinary differential equation of third order is obtained for the deter-
mination of r(n)

M4+ Nr+a+07+200+7 1 +0+)2=0 (1.6)

This equation can be written in the form
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From thls it follows directly that

M+ N+l + =0 .7

From condition {1.5) 1t follows that (,= 0 . In this case Equation (1.7)

is readily integrated, and for the function f(n) the following expression 1s
obtained

fm= ;]—9_1:11-:2—— n (C = const)
Consequently, the deslred stream function has the form
Cr
P (r,5) = D ACES] (1.8)
For the determination of the constant (¢ , the veloclty components are
found op 20 M Crik’ (s)
= TLKG IR v T 9 KGR 1.9

For r = O the velocity v,= O and v, = v, , where the velocity v, 1s
a constant along the free streamline [, and 1is determined for the known
pressure p, from the Bernoulll equation. From (1.9) it follows. that the
constant C = 2v, .

Together with the streamline ,, the curvilinear wall [,, for which the
equation in the selected system of coordinates is r=n{g), 1s also a stream-
line, i.e. y[h(8),s] = @, where ¢ 1is the amount of fluid 1in the Jet.
Utilizing (1.8) we find from ‘this relationship

20
2z — QK (5) (1.10)
In this fashion the flow 1s completely determined when the curvature of

the stream is known. Thus, for velocity uv,(s) along the-wall 7, the fol-
lowling expression is obtained from (1.9) for r = n(s)

sy . Avt [4 4 Bt () K2 (s)]
W= THRHE W - 2P

h(s) ==

or, substiuting h(g) according to (1.10),
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4o 1( 209 \4 (1.11)
3(g) — 20" | 2g _—K——"-)]
2} () = g | KO + 7 :
It 1s noted that the relationship (1.11) can be regarded as an ordinary.
differential equation for a curvature of the jet x(s), if the distribution
of velocities along the wall [, 1is considered as known.

2. Results obtained are utilized for the solution of the problem of Jet
impingement on the surface of a heavy fluid (Fig. 2). At the boundary of
contact between the jet and the heavy
fluid at rest there will be a contact
dlscontinuity of velocitles, The pres-
sure which does not undergo a disconti-
nulty along this boundary is taken to
be equal to the hydrostatlic pressure
P1= po— 1Y (s). The phenomenon menticoned
1s particularly clearly observed on impact
of a gaseous Jet on the surface of a heavy
Flg. 2 fluid. Here x(g) and y(s) are equa-

* tions for the boundary [, in Cartesian

coordinates (Fig. 2), y 1is the specific

gravity of the heavy fluid.
The velocity v,(e) along the boundary is determined from Bernoulli's

equation
042 (8) = v + 27y (s) 2.1)

Subsequently the curvature of the jJet is determined from (1.11).

The derivative dh/&e 1s a small quantity of the order h(s)/h(s) , and
therefore in the exact condition wv,= v,sinf we can set sing =tang= gr/ds
(where 8 1s the angle of inclination of velocity to the g-axis).

Therefore, when a small value for the ratio h(e)/R(s) is specified,using
the approximate relatlonship

dh
vr = vy 7‘3- (2.2)

instead of Equation (1.11),we obtain
42)0 Q

@K @F2r — 2k Rl =70 (2.3)

and according to (1.10) the curvature of the jet 1s
2 7 (s) \'e ,
Ko = 1= (2 2)"] (2.4)

Substituting the value v, (s) from (2.1) into (2.4) a relationship of the
following form 1s obtained

K(s) = % (vo — vV vV v+ 21y (s) (2.5)

In view of the thinness of the jet, with accuracy to small quantities of
second order the curvature of the jet 1s taken to be equal to the curvature
of the line I, . Then, if the curvature of the line 7, 1is assumed to be
known from (2.5), the equations for the curve have the form [5]

8

sin [S K (s)ds + ao] ds + y (0) (2.6)

(ay = const)
cos[

K (s)ds + ao] ds + z (0) (2.7)
Eliminating the curvature x(s) from (2.5) and (2.6), we obtain

y(s) =

z(s) =

Cl I O O®
o w ©
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__dylds _ 2

Vi—(dy/ds® €@

This equation is solved in an elementary fashion by substituting
dy [ ds = B (y).

(o— V vV vt + 219 (9) (2.8)

Finally, the problem of determining the shape of Jet reduces to the quadrature

BT YT |, S

The curvature K(g) is determined from the known function y(s), then x(ag
is found from (2.7). However, by making use of the relationshlp dx®+d}° = ds
the parameter & might be eliminated
 — [12Q7 (v — Hsvo ™yt (m® + 299)"9) + G,

[3

2Q7 [uoy — Y500 17 (26 + 27y) ] + Ca)?

The constant ¢, 1s determined from the known angle of incidence of the

Jet. If the angle of incldence for the jet 1s set equal to g (Fig. 2) we
obtain lind
Yo

Cz=5,‘76+0033

dy _
rrams

(2.10)

From Equation (2.10) we can determine directly the maximum penetration
depth of the jet into the fluid (setting dy/dx = O), and also the angle of
exit for the Jet It turns out that the angle of exit i1s equal to the angle
of incldence for the Jet.
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