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tor af flow velaclty does not vary afong Ifnes normal to the surfaces defln- 
ing the hyer, and that the velociky components alang the normaf me equal 
to zero* 

Frankl’ [3] who skM.ed potential jet flows of fluid on the Surface of a 
solid body, obtained an approxlmate equation for the potential of velocities. 

A solution in closed form is found below for the problem of piane-parallel 
Jet flow an a cufvilinear surface of a small curvature, 

1. Let us examine a Jet of a perfect lncompresslble fluid bounded by a 
slightly curved wall L, and a region of constant pressure F s P, fFi.g.lf. 
An auxiliary orthogonenl. curvilinear coordinate system is selected such that 
the axl8 e is oriented along the free streamline Lo, In this curvilinear 

Euler’s equation8 and continuity equations have the follOWlng form 

t 3P -- 
pff- 3s 

where Hr 3nd .y, are Lam& parameters, .13(s) fs the radius of eurvatwe of 
the Jet. It Is assumed that the thickness af the Jet MS) *R (sj, azd terms 

of the order h(s) j R fsj. are omitted fn 
Equaflons (l.lj.. Then equations oF the fol- 
lowir$ form are obtained: 

Fig. 4 Here x(s) is the curvature of the jet. 
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It is assumed that the function ~(8) is continuously differentiable. 

Using equations of continuity a stream function $(r,g) Is introduced, 
and the pressure P(r,s) Is eliminated from Equations (1.2). For determlna- 
tion of the stress function a partial nonlinear equation of third order is 
obtained 

a$ @rl, ___-wJ+dpJ2+ 2Kts) a2Lf-=o 
ar asar~ (1.3) 

We will look for a solution of thl8 equation In the form 

11, (r, s) = q+;"' (1.4) 

where the nondimensional quan;i~yO Q = FK(s) . Since Lo IS a streamline, 
we can set the following for 

Q(R s) = 0, f (0) == 0 (1.5) 

Substituting Expression (1.4) for the stream function in Equation (1.3), 
an ordinary differential equation of third order Is obtained for the deter- 
mination of .?(rj) 

(? -;- n f” + (1 -I- f’) f” + 2q (1 + f’) f” 4- (1 + f’)2 = 0 
This equation can be written In the form 

-& [(q f 1) f” f q(1 i; f’)Y = 0 

From this it follows directly that 

(1.6) 

(q+ fl f" 9 rl(1 i- f’P = Cl (1.7) 

From condition (1.5) it follows that C,= 0 . In this case Equation (1.7) 
is readily Integrated, and for the function f(q) the following expression Is 
obtained 

cll -- f (rl) = q + 2 11 (C = const) 

Consequently, the desired stream function has the form 

Q (r, s) = Cr rK (s) _t 2 (1.8) 

For the determination of the constant C , the velocity components are 
found 

W 2c a*,- CrZK’ (s) 
cx= -= ar [rK (s) + 212, ' 21, = - - = as [rK (s) i- 2)’ (1.9) 

For r = 0 the velocity, u,= 0 and v, = v0 , where the velocity v0 is 
a constant along the free streamline ,& and Is determined for the known 
pressure p0 from the Bernoulli equation. From (1.9) it follows that the 
constant C = 2v, . 

Together with the streamline &, the curvilinear wall L,, for which the 
equation in the selected system of coordinates is r=h(a), Is also a stream- 
line, i.e. $[h(~ ),s] = 4, where Q is the amount of fluid In the jet. 
Utilizing (1.8) we find from %his relationship 

(1.10) 

In this fashion the flow is completely determined when the curvature of 
the stream is known. Thus, for velocit 
lowing expression is obtained from (1.9 T 

u, (5) along the- wall L, the fol- 
for r = h(s) 

V‘2(S) 2. 
4ao* [4 + h* (s) h-'2(s)] 
_[h(S)X(R) + "14 

or, substi&utlng h(a) according to (l.lO), 
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al’ (d = (2;ov;zQ)’ [ K’s(s) + $ ( K 27&J 
Q )I 

(1.11) 

It Is noted that the relationship (1.11) can be regarded as an ordinary. 
differential equation for a curvature of the jet K(S), If the distribution 
of velocities along the wall L, is considered as known. 

lmp&ement on the surface of a heavy fluid (Big. 2). 
Results obtained are utilized for the solution of the problem of jet 

At the boundary of 
contact between the jet and the heavy 
fluid at rest there will be a contact 

Fig. 2 

gravity of the heavy fluid. 

to the hydrostatic pressure 
- T?/(S). The phenomenon mentioned 

Is particularly clearly observed onlmpact 
of a gaseous jet on the surface ofalmavy 
fluid. Here ~(8) and v(e) are equa- 
tions for the boundary L, In Cartesian 
coordinates (Pig. 2), y 1s the specific 

The velocity ~~(8) along the boundary Is determined from Bernoulli's 
equation 

via (4 = vo* + 2yy (s) (2.1) 

Subsequently the curvature of the jet Is determined from (1.11). 

The derivative ddds Is a small quantity of the order h(e)/I)(s) and 
therefore in the exact condition v,= v,sin8 we can set sinCJztan8= ih/d8 
(where 8 Is the angle of inclination of velocity to the S-~is). 

Therefore, when a small Value for the ratio h(8)/%(8) is speclfled,uslng 
the approximate relationship 

Instead of Equation (l.ll),we obtain 

[A (s)K4FY + a]* = Q (4, h (4 = v& 

and according to (1.10) the curvature of the jet Is 

K(s) = + [* _ (x$L)“‘] 

(2.5) 

Substituting the value u,(e) from (2.1) Into (2.4) a relationship of the 
following form Is obtained 

K(s) = + (ucl- l/vJ-vo~ + 2yy (s)) (2.5) 

In view of the thinness of the jet, with accuracy to small quantities of 
second order the curvature of the jet Is taken to be equal to the curvature 
of the line L Then, If the curvature of the line L, Is assumed to be 
known from (2.bj, the equations for the curve have the form [5] 

y (s) = 5 si*[S K(s) ds + a, 
I 

ds + y (0) (2.6) 
0 0 

(I -s 
(a0 = const) 

x (s) = s 1s co9 K (4 ds -I- a, 1 ds -I- x (0) (2.7) 
0 0 

Eliminating the curvature K(S) from (2.5) and (2.61, we obtain 



d=y I dsa 

1/l - (dy I ds)' 
= $(v, - Vvll~v02 + 2YY 6)) (2.8) 

This equation Is solved In an elementary fashion by substituting 

dy 1 ds = B (y). 

Finally, the problem of determining the shape of jet reduces to the quadrature 

The curvature x(s) Is determined from the known function v(e), then ~(81 

Is found from (2.7). However, by making use of the relationship &?+a$= de 
the parameter 8 might be eliminated 

dy _ f 11 - l2Q-l(voy - %vc?~~-1 (vo9 + 27Y)9 + C,]S}'/' 
dx'- OQ-' [vov - %v&-1 (vOs + 2yy)'~~~ + c,)-1 

(2.10) 

The constant C, 1s determlned from the known angle of Incidence of the 
.iet. If the anale of Incidence for the .let Is set equal to B (Fig. 2) we 
obtain 

” 

4vo9 
c:, = 574 + cos P 

From Equation (2.10) we can determine directly 
depth of the jet Into the fluid (setting au/ax = 
exit for the jet It turns out that the angle of 
of incidence for the jet. 

the maximum penetration 
0), and also the angle of 
exit 1s equal to the angle 
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