A PLANE SLIGHTLY CURVED JET OF
 A PERFECT INCOMPRESSIBLE FLUID

(2LOSKAIA SLABOISKRIVLENALA STRULA IDEAL'NOI NESZHIMMAEMOI 2HIDKOSTI)

FMM Vol.28, № 3, 1964, pp.564-566
A. P. FHOLOV
(Moscow)
(Recelved November 2, 1963)

Steady potential flow of fluld in thin layers bounded by curvilimear surfaces was investigated in detail in [1 and 2] for the conditions that the vector of flow velocity does not vary along lines normal to the suriaces derining the layer, and that the velocity components along the normal are equal to zero.

Frankl [[3] who studed potential jet flows of fluld on the surface of a solid body, obtained an approximate equation for the potential of velocities.

A solution in closed form is found below for the problem of plane-parallel Jet flow on a curvilinear surface of a small curvature.

1. Let us examine a jet of a perfect incompressible fiuid bounded by a slightly curved wail L_{1} and a region of constant pressure $F=p_{0}$ (Fig.1). An auxiliary orthogonal curvilinear coordinate system is selected such that the axis a is oriented along the free streamline L_{0}. In this curvilinear system Euler's equations and continuity equations have the followine form

$$
\begin{align*}
& \quad \frac{v_{s}}{H_{s}} \frac{\partial v_{s}}{\partial s}+\frac{v_{r}}{H_{r}} \frac{\partial v_{s}}{\partial r}+\frac{v_{s} v_{r}}{H_{s} H_{r}} \frac{\partial H_{s}}{\partial r}-\frac{v_{r}^{2}}{H_{r} H_{s}} \frac{\partial H_{r}}{\partial s}=-\frac{1}{p H_{s}} \frac{\partial p}{\partial s} \\
& \frac{v_{r}}{H_{r}} \frac{\partial v_{r}}{\partial r}+\frac{v_{s}}{H_{s}} \frac{\partial v_{r}}{\partial s}+\frac{v_{r} v_{s}}{H_{r} H_{s}} \frac{\partial H_{r}}{\partial r}-\frac{v_{s}^{2}}{H_{s} H_{r}} \frac{\partial H_{s}}{\partial r}=-\frac{1}{\rho H_{r}} \frac{\partial p}{\partial r} \quad \text { (11) } \tag{11}\\
& \frac{1}{H_{s}} \frac{\partial v_{s}}{\partial s}+\frac{1}{H_{r}} \frac{\partial v_{r}}{\partial r}+\frac{1}{H_{s} H_{r}}\left(v_{s} \frac{\partial H_{r}}{\partial_{s}}+v_{r} \frac{\partial H_{s}}{\partial r}\right)=0 \quad\left(H_{r}=1, H_{s}=1+\frac{r}{R(s)}\right)
\end{align*}
$$ where H_{*} and H_{t} are Lame parameters, $A(s)$ is the radus of curvature of the fet. It is assumed that the thickness of the jet $h(s) \& R(s)$, and terms of the order $h(s) / R(s)$. are omitted in Equations (1.1). Then equations of the rollowing form are obtained:

Fig. 1

$$
\begin{array}{r}
v_{s} \frac{\partial v_{s}}{\partial s}+v_{r} \frac{\partial v_{s}}{\partial r}=-\frac{1}{\rho} \frac{\partial p}{\partial s} \\
-K(s) v_{s}^{2}=-\frac{1}{\rho} \frac{\partial p}{\partial r}, \quad \frac{\partial v_{s}}{\partial s}+\frac{\partial v_{r}}{\partial r}=0 \tag{1.2}
\end{array}
$$

Here $K(s)$ is the curvature of the jet.

It is assumed that the function $K(s)$ is continuously differentiable.
Using equations of continuity a stream function $\psi(r, s)$ is introduced, and the pressure $p(r, s)$ is eliminated from Equations (1.2). For determination of the stress function a partial nonlinear equation of third order is obtained

$$
\begin{equation*}
\frac{\partial \psi}{\partial r} \frac{\partial^{3} \psi}{\partial s \partial r^{2}}-\frac{\partial \psi}{\partial s} \frac{\partial^{3} \psi}{\partial r^{3}}+\frac{d K}{d s}\left(\frac{\partial \psi}{\partial r}\right)^{2}+2 K(s) \frac{\partial \psi}{\partial r} \frac{\partial^{2} \psi}{\partial r \partial s}=0 \tag{1.3}
\end{equation*}
$$

We will look for a solution of this equation in the form

$$
\begin{equation*}
\psi(r, s)=\frac{\eta+f(\eta)}{K(s)} \tag{1.4}
\end{equation*}
$$

where the nondimensional quantity $\eta=r_{K}(s)$. Since L_{0} is a streamilne, we can set the following for $r=0$

$$
\begin{equation*}
\psi(0, s)=0, \quad f(0)=0 \tag{1.5}
\end{equation*}
$$

Substituting Expression (1.4) Cor the stream function in Equation (1.3), an ordinary differential equation of third order is obtained for the determination of $f(\eta)$

$$
\begin{equation*}
(\eta+f-f) f^{\prime \prime \prime}+\left(1+f^{\prime}\right) f^{\prime \prime}+2 \eta\left(1+f^{\prime}\right) f^{\prime \prime}+\left(1+f^{\prime}\right)^{2}=0 \tag{1.5}
\end{equation*}
$$

This equation can be written in the form

$$
\frac{d}{d \eta}\left[(\eta+f) f^{\prime \prime}+\eta\left(1+f^{\prime}\right)^{2}\right]=0
$$

From this it follows directly that

$$
\begin{equation*}
(\eta+f) f^{\prime \prime}+\eta\left(1+f^{\prime}\right)^{2}=C_{1} \tag{1.7}
\end{equation*}
$$

From condition (1.5) it follows that $C_{1}=0$. In this case Equation (1.7) is readily integrated, and for the function $f(\eta)$ the following expression is obtained

$$
f(\eta)=\frac{c \eta}{\eta+2}-\eta \quad(C=\text { const })
$$

Consequently, the desired stream function has the form

$$
\begin{equation*}
\psi(r, s)=\frac{C r}{r K(s)+2} \tag{1.8}
\end{equation*}
$$

For the determination of the constant C, the velocity components are found

$$
\begin{equation*}
v_{\mathrm{s}}=\frac{\partial \psi}{\partial r}=\frac{2 C}{[r K(s)+2]^{2},}, \quad v_{r}=-\frac{\partial \psi}{\partial s}=\frac{C r^{2} K^{\prime}(s)}{[r K(s)-2]^{2}} \tag{1.9}
\end{equation*}
$$

For $r=0$ the velocity, $v_{r}=0$ and $v_{a}=v_{0}$, where the velocity v_{0} is a constant along the free streamline L_{0} and is determined tor the known pressure p_{0} from the Bernoulli equation. From (1.9) it follows that the constant $\quad C=2 v_{0}$.

Together with the atreamline L_{0}, the curvilinear wall L_{1}, for which the equation in the selected system of coordinates is $r=h(s)$, is also a streamline, i.e. $\psi[h(s), s]=Q$, where Q is the amount of fluid in the jet. Utilizing (1.8) we find from this relationship

$$
\begin{equation*}
h(s)=\frac{-2 Q}{-r_{0}-Q K(s)} \tag{1.10}
\end{equation*}
$$

In this fashion the flow is completely determined when the curvature of the stream is known. Thus, for velocity $v_{1}(s)$ along the wall L_{1} the following expression is obtained from (1.9) for $r=h(s)$

$$
v_{1}^{2}(s)=\frac{4 v_{0}^{2}\left[4+h^{4}(s) K^{\prime 2}(s)\right]}{\left[h(s) K^{\prime}(s)-2\right]^{4}}
$$

or, substivuting $h(s)$ according to (1.10),

$$
\begin{equation*}
v_{1}^{2}(s)=\frac{4 v_{0}^{2}}{\left(2 v_{0} / Q\right)^{4}}\left[K^{\prime 2}(s)+\frac{1}{4}\left(K-\frac{2 v_{0}}{Q}\right)^{4}\right] \tag{1.11}
\end{equation*}
$$

It is noted that the relationship (1.11) can be regarded as an ordinary. differential equation for a curvature of the jet $K(s)$, if the distribution of velocities along the wall L_{1} is considered as known.
2. Results obtained are utilized for the solution of the problem of jet impingement on the surface of a heavy fluid (Fig. 2). At the boundary of contact between the jet and the heavy

Fig. 2
gravity of the heavy fluid.
The velocity $v_{1}(s)$ along the boundary is determined from Bernoulli's equation

$$
\begin{equation*}
v_{1}^{2}(s)=v_{0}^{2}+2 \gamma y(s) \tag{2.1}
\end{equation*}
$$

Subsequently the curvature of the jet is determined from (1.11).
The derivative $d h / d s$ is a small quantity of the order $h(s) / R(s)$, and therefore in the exact condition $v_{r}=v_{1} \sin \theta$ we can set $\sin \theta \approx \tan \theta=d h / d s$ (where θ is the angle of inclination of velocity to the s-axis).

Therefore, when a small value for the $\operatorname{ratio} h(s) / R(s)$ is specified, using the approximate relationship

$$
\begin{equation*}
v_{r}=v_{1} \frac{d h}{d s} \tag{2.2}
\end{equation*}
$$

Instead of Equation (1.11), we obtain

$$
\begin{equation*}
\frac{4 v_{0}}{[h(s) K(s)+2]^{2}}=v_{1}(s), \quad h(s)=\frac{Q}{\sqrt{v_{0} v_{1}(s)}} \tag{2.3}
\end{equation*}
$$

and according to (1.10) the curvature of the jet is

$$
\begin{equation*}
K(s)=\frac{2 v_{0}}{Q}\left[1-\left(\frac{v_{1}(s)}{v_{0}}\right)^{1 / 2}\right] \tag{2,4}
\end{equation*}
$$

Substituting the value $v_{1}(a)$ from (2.1) into (2.4) a relationship of the following form is obtained

$$
\begin{equation*}
K(s)=\frac{2}{Q}\left(v_{0}-\sqrt{v_{0} \sqrt{v_{0}^{2}+2 \gamma y(s)}}\right) \tag{2.5}
\end{equation*}
$$

In view of the thinness of the jet, with accuracy to small quantiries of second order the curvature of the jet is taken to be equal to the curvature of the line L_{1}; Then, if the curvature of the line L_{1} is assumed to be known from (2.5), the equations for the curve have the form [5]

$$
\begin{align*}
& y(s)=\int_{0}^{s} \sin \left[\int_{0}^{s} K(s) d s+a_{0}\right] d s+y(0) \tag{2.6}\\
& x(s)=\int_{0}^{s} \cos \left[\int_{0}^{s} K(s) d s+\alpha_{0}\right] d s+x(0) \tag{2.7}
\end{align*}
$$

$$
\left(\alpha_{0}=\text { const }\right)
$$

Eliminating the curvature $K(s)$ from (2.5) and (2.6), we obtain

$$
\begin{equation*}
\frac{d^{2} y / d s^{2}}{\sqrt{1-(d y / d s)^{2}}}=\frac{2}{Q}\left(v_{0}-\sqrt{v_{0} \sqrt{v_{0}^{2}+2 \gamma y(s)}}\right) \tag{2.8}
\end{equation*}
$$

This equation is solved in an elementary fashion by substituting

$$
d y / d s=B(y)
$$

Finally, the problem of determining the shape of jet reduces to the quadrature

$$
\begin{equation*}
\left.s= \pm \int\left\{1-\left[\frac{2}{Q}\left(v_{0} y-\frac{2 \sqrt{v_{0}}}{5 \gamma}\left(v_{0}^{2}+2 \gamma y\right)^{3 / 4}\right)+C_{2}\right)\right]^{2}\right\}^{-1 / 2} d y \tag{2.9}
\end{equation*}
$$

The curvature $K(a)$ is determined from the known function $y(s)$, then $x(a)$ is found from (2.7). However, by making use of the relationship $d x^{2}+d y^{2}=d s^{2}$ the parameter s might be eliminated

$$
\begin{equation*}
\frac{d y}{d x}= \pm \frac{\left\{1-\left[2 Q^{-1}\left(v_{0} y-2 / 5 v_{0}^{1 / 2} \gamma^{-1}\left(v_{0}^{2}+2 \gamma y\right)^{3 / 4}\right)+C_{2}\right]^{2}\right\}^{1 / 2}}{\left\{2 Q^{-1}\left[v_{0} y-2 / 5 v_{0}^{2 / 2} \gamma^{-1}\left(v_{0}^{2}+2 \gamma y\right)^{1 / 4}\right]+C_{2}\right)^{-1}} \tag{2.10}
\end{equation*}
$$

The constant C_{2} is determined from the known angle of incidence of the jet. If the angle of incidence for the jet is set equal to β (Fig . 2) we obtain

$$
C_{2}=\frac{4 v_{0}^{3}}{5 \gamma Q}+\cos \beta
$$

From Equation (2.10) we can determine directly the maximum penetration depth of the jet into the fluid (setting $d y / d x=0$), and also the angle of exit for the jet It turns out that the angle of exit is equal to the angle of tncidence for the jet.

BIBLIOGRAPHY

1. Golubeva, 0.V., Issledovanie dvizhenii zhidkosti po krivolineinym poverkhnostiam (Investigation of fluid flow on curvilinear surfaces). Uch.zap. MOPI Vol.18, N 2, 1951.
2. Golubeva, O.V., Uravnenie ustanovivshikhsia potentsial'nykh dvizhenil ideal'noi neszhimaemoi zhidkosti v plenke peremennoi tolshchiny, raspolozhennoi na krivolineinoi poverkhnosti (Equations for steady potential flows of a perfect incompressible fluid in a film of varying thickness located on a curvilinear surface). Uch.zap.MOPI Vol.33, 1955.
3. Frankl', F.I., Priblizhennyi raschet struinogo potentsial'nogo techenila zhidkosti, rasprostraniaiushchegosia po poverkhnosti tverdogo tela tonkim sloem (Approximate calculation of potential jet flow of a fluid propagating in a thin layer over the surface of a solid body). PMN Vol.24, N2 2, 1960.
4. Kochin, N.E., Kibel', I.A. and Roze, N.V., Teoreticheskaia gidromekhanika (Theoretical Hydromechanics), part 1 and 2, Fizmatgiz, 1953.
5. Rashevskif, P.K., Kurs differentsial'no1 geometrii (A Course in Differential. Geometry). Gostekhtecretizdat, 1950.
